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Quantifying coastal cliff erosion is critical for improved predictions of coastal change and coastal management.
However, few studies have been conducted at a scale (>100 km) and resolution (~1 m) sufficient to constrain
regional change. Here, we quantified cliff erosion for 866 km of the California coastline using airborne LiDAR
data collected in 2009–2011 and 2016. A semi-automatedmethod was used tomap cliff faces. Negative (volume
loss) and positive (volume gain) change objects were created by grouping adjacent cells using vertical and areal
change thresholds and surface optical signatures. We assessed the performance of five machine learning algo-
rithms to separate erosion and deposition from other changes within the cliff face, notably vegetation loss and
growth, and found that discriminant analysis performed best. After applying the classification method to the en-
tire cliff change dataset, the results were visually inspected for quality control, producing a final dataset com-
prised of 45,699 erosion and 1728 deposition objects. The net volume loss from 2009–2011 to 2016 was
1.24 × 107 m3, equivalent to an erosion rate of 2.47 m3 yr−1 per meter of coastline, and an average cliff re-
treat rate of 0.06 m yr−1. Eroded volumes ranged from 6.43 m3 to 7.52 × 105 m3 and fit a power-law fre-
quency distribution (β = 0.80; r2 = 0.99). Over this study period, 7% of eroded material remained on the
cliff face. Cliff retreat rates varied spatially with the highest rates in Humboldt County (0.18 m yr−1) and
the lowest in Orange County (0.003 m yr−1).

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coastal cliffs are erosional features found worldwide (Emery and
Kuhn, 1982; Trenhaile, 1987; Sunamura, 1992; Prémaillon et al., 2018;
Young and Carilli, 2019) and their retreat threatens clifftop communi-
ties and infrastructure. Sea level rise and increased storminess associ-
ated with climate change are expected to increase cliff erosion (Slott
et al., 2006; Ashton et al., 2011). Quantifying cliff retreat and under-
standing the driving processes is essential for improved coastal man-
agement and coastal erosion projections (Walkden and Dickson, 2008;
Limber et al., 2018). Cliffed coastlines are less studied than other coastal
environments (Naylor et al., 2010) and only a few studies (Hapke et al.,
2009; Young, 2018) provide analysis at large spatial scales (>100 km)
that can help inform regional planning and decision making.

Historical cliff retreat rates are often manually measured on cliff top
transects using historical maps and aerial photography (e.g. Clark and
Lee, 2002; Brooks and Spencer, 2010). However, cliff top changes may
not represent cliff face changes (Rosser et al., 2005; Young et al.,
2009), are subject to mapper interpretation, and are limited to the rela-
tively low resolution of historical data that often results in high
.V. This is an open access article und
measurement uncertainty (Moore, 2000; Lim et al., 2010). Recently,
several studies developed methods to automate detection of cliff bases
and tops to avoid bias associated with mapper interpretation (Liu
et al., 2009; Richter et al., 2013; Palaseanu-Lovejoy et al., 2016; Payo
et al., 2018). Liu et al. (2009) approximated coastal bluff base and top
positions using slope variations along shore-perpendicular transects,
combined with image segmentation, surface reconstruction, and edge
detection on ortho-images. Richter et al. (2013) identified the beach/
dune border directly on digital elevations models (DEMs, without
using transects), as a contour line created using Sobel (1st derivative)
and Laplacian (2nd derivative; sensitive to slope change) terrain filters.
Palaseanu-Lovejoy et al. (2016) developed a simple cliff delineation
model by comparing elevations along a cross-shore transect with eleva-
tions along a straight line between transect ends. Cliff base and top
points were defined as locations along the transects with the largest dif-
ference between the two elevations. Payo et al. (2018) used the same
principle but also developed automated generation of the coastline
and transects, and extraction of elevations along the transects.

Advances in mapping with Light Detection and Radar (LiDAR) and
Structure-from-Motion (SfM) photogrammetry allow for 3D erosion
analysis using point clouds (e.g. Williams et al., 2018; Warrick et al.,
2019; Benjamin et al., 2020) and 2.5D analysis using DEMs (e.g. Young
and Ashford, 2006; Young et al., 2009, 2011, 2021; Earlie et al., 2015;
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Letortu et al., 2015; Terefenko et al., 2019; Westoby et al., 2020). These
methods allow the identification and analysis of erosion and deposition
zones (Young, 2018), cliff face erosion sequences (Collins and Sitar,
2008; Rosser et al., 2013), and cliff failure volume-frequency relation-
ships (Benjamin et al., 2016, 2020;Williams et al., 2018, 2019). Existing
2.5D/3D studies often span shorter study durations (up to a decade) but
provide higher resolution analysis compared to studies based on histor-
ical cartography.

Volumetric topographic change analysis is limited by data qual-
ity, resolution, surface complexity, and the ability to isolate valid
cliff change (Milan et al., 2011; Williams, 2013; Turowski and Cook,
2017). Differenced coastal terrain models can show a combination
of changes related to dune morphology, beach dynamics, cliff ero-
sion, human modification, vegetation, etc. To isolate valid cliff ero-
sion, topographic changes are often categorized manually (Young,
2018). Machine learning algorithms provide a method to automate
this classification, reducing human-induced classification error, and
increasing processing efficiency (Alpaydin, 2014). One such method,
object-based image analysis, segments rasters into pixel groups
(objects) by maximizing the similarity within object classes
(Blaschke, 2010). Example applications in geomorphology include
land cover classification (Li et al., 2013; Juel et al., 2015; Liu
et al., 2018), landslide mapping (Li et al., 2015; Amatya et al.,
2019; Ghorbanzadeh et al., 2019), and building landslide suscepti-
bility models (Marjanović et al., 2011; Goetz et al., 2015; Dickson
and Perry, 2016). To our knowledge, machine learning has not pre-
viously been used to classify erosion and deposition within cliff
faces.

The primary focus of this studywas to develop amethod to quantify
coastal cliff erosion at high-resolution over large spatial areas. This was
Fig. 1. California study area showing a) the distribution of coastal cliffs (red) and (b-e) exampl
mountain slope in Big Sur; d) developed cliff tops in Isla Vista, Santa Barbara; e) uplifted marin
from 1982–2008. Photographs copyright © 2002–2021 Kenneth & Gabrielle Adelman, Californ
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achieved through semi-automated delineation of coastal cliff faces from
terrain models, and the application of machine learning algorithms to
classify changes within the cliff face to generate an inventory of erosion
anddeposition features. This studywasprimarily focused on developing
and validating these newmethods, but we also quantified change mag-
nitudes such as volume and retreat rates, explored volume-frequency
distributions, and examined alongshore erosion differences at county
level and in 10 km alongshore blocks. Higher resolution spatio-
temporal variability in erosion and controlling factors will be examined
with this dataset in a subsequent study.

2. Study area

Rocky and cliffed coasts comprise 72% of California's 1646 km coast-
line (Fig. 1, Griggs et al., 2005; Young, 2018). The California coast is tec-
tonically active and contains numerous fault zones, most notably the
San Andreas Fault, dividing the North American and Pacific plates.
Tectonic processes have produced several coastal mountain ranges
and a series of uplifted marine terraces along much of the coastline.
The coastal cliff lithology includes granite, Tertiary sandstones, shales
and conglomerates, Mesozoic sandstone, shales and basalts, and
weakly-lithified Quaternary deposits (Hapke et al., 2014). In southern
and central California, the mean cliff base Schmidt hammer rebound
value (a measure of rock hardness), measured mostly in Tertiary sedi-
mentary and shale cliffs, was 28 ± 13 (std dev) and ranged from 6 to
71 (Young, 2018).

Shore platforms fronting the cliffs are usually covered by a veneer of
beach sand and sometimes cobble (Griggs et al., 2005; Hapke et al.,
2014). Vos et al. (2020) estimated mean state-wide beach slope of
0.068 ± 0.024 (std dev) from satellite data on >8000 transects. Beach
es of coastal settings: b) uplifted marine terrace in Bodega Head; c) coastal cliff as part of a
e terrace in Torrey Pines, San Diego. HS refers to the average significant buoy wave height
ia Coastal Records Project, www.Californiacoastline.org.

Image of Fig. 1
http://www.Californiacoastline.org
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width ranges from 0 to hundreds of meters and varies spatially and sea-
sonally depending on tidal levels, wave conditions, sand elevation, etc.

The California coast is exposed to waves generated by local winds
and distant storms in both hemispheres. During winter, swell from the
North Pacific and Gulf of Alaska is most energetic, whereas swell from
the South Pacific dominates in summer. Waves reaching the southern
California coast undergo a complex transformation, and shadows of
the Channel Islands create strong alongshore variations in wave height
(Pawka, 1983). Annual nearshore wave energies are generally larger
north of Point Conception in central and northern California compared
to southern California. For example, between 1982 and 2008 the aver-
age significant buoy wave height south of Point Conception at Santa
Monica (#46025) and Santa Barbara (#46053) was 1.2–1.3 m, com-
pared to 2.2–2.3 m north of Point Conception at Monterey (#46042),
Bodega Bay (#46013), and Crescent City (#46027) (Fig. 1a; ndbc.noaa.
gov). Tidal range is about 1.6–2.1 m (tidesandcurrents.noaa.gov). Tide
level and beach elevation influence wave-cliff interaction in some por-
tions of the state, where large swells arriving during relatively low
tides may not reach the cliffs, whereas moderate swell arriving during
high tide can have significant wave-cliff impact duration (Young et al.,
2016).

The California climate is characterized by dry summers and occa-
sionally wet winters, with most rainfall occurring from November to
March. Annual coastal precipitation generally increases northward
with mean annual precipitation ranging from 257 mm in San Diego to
1798 mm in Crescent City, but is locally higher along the Big Sur coast
and lower in the San Francisco and Monterey areas (wrcc.dri.edu).

Coastal cliff retreat studies in California date back at least to 1932
(Vaughan, 1932). Since then, numerous studies have been conducted
using a variety of measurement techniques ranging from observations
of dated inscriptions (Emery and Kuhn, 1980) to terrestrial LiDAR
(Collins and Sitar, 2008) and Unmanned Aerial Vehicle based SfM
(Warrick et al., 2019). These studies have been often local, but Griggs
et al. (2005) provided a statewide compilation of many of these studies,
and U.S. Army Corps of Engineers (1971) provided a qualitative state-
wide erosion assessment. Hapke et al. (2009) measured cliff top retreat
along 353 km cliffs (~20% of California coastline) using National Ocean
Service Topographic Maps (‘T-sheets’) from the 1920s–1930s and air-
borne LiDAR collected in 1998 and 2002. Using shore-normal transects
spaced 20m alongshore, Hapke et al. (2009) calculated mean andmax-
imum cliff top retreat rates of 0.3 m yr−1 and 3.1 m yr−1, respectively,
with estimated errors of 0.2 m yr−1. Young (2018) conducted the
most recent systematic study measuring cliff changes for 595 km of
southern and central California (~35% of California coastline) in 5 m
alongshore compartments. Using airborne LiDAR collected in 1998 and
2009–2011, Young (2018) measured a mean cliff top retreat rate of
0.12 m yr−1 (max 4.2 m yr−1) and a cliff face retreat rate (based on
2.5D change analysis) of 0.04 m yr−1 (max 3.8 m yr−1). Young (2018)
found that historical (1920s–1930s to 1998) and more recent (1998 to
2009–2011) cliff top retreat rateswere significantly inversely correlated
for areas with large retreat rates in either epoch.

3. Methods

The workflow to develop inventories of erosion and deposition ob-
jects consisted of four linked modules including point cloud processing,
cliff face mapping, change detection, and change classification (Fig. 2).

3.1. Data preparation

3.1.1. Data acquisition
This study used freely available airborne LiDAR survey data collected

in 2009–2011 and 2016 (coast.noaa.gov). The 2009–2011 survey
(NOAA “CSC”) was conducted on 51 days between October 2009 and
August 2011. For this survey, the coastline was split into 22 alongshore
blocks, each of which was surveyed over single or multiple days, with
3

timespans usually less than a few months but reaching >200 days in
northern California (Table 1). The point clouds have a vertical reference
of NAVD88 and Geoid09, and horizontal datum of NAD83(NSRS2007).
The average point density is 1.5 pts. m−2. The vertical accuracy (at the
95% confidence level) varies with terrain type and equals 0.07 m for
urban areas, 0.09 m for open terrain, 0.23 m for marsh, and 0.40 m for
grass, weeds, and crops (Dewberry, 2012).

The 2016 survey (USGS “West Coast El Niño”) was conducted in
April–May 2016 along the coast of California, Oregon, and Washington.
Tiled ~1 km2 point clouds are vertically referenced to NAVD88 and
Geoid12B, and horizontal datum NAD83(2011). The average point den-
sity is 66 pts. m−2. The horizontal accuracy is 0.21m, and the vertical ac-
curacy is 0.11 m and 0.21 m, for non-vegetated and vegetated terrain,
respectively (95% confidence level; Dewberry, 2016).

3.1.2. Point cloud processing
Each survey dataset was separated into 60 predefined cliffed along-

shore sections ranging from 6 to 51 km using a polygon shapefile.
Where possible, section ends were placed at non-cliff locations, such
as estuary mouths. Ground filters were not used. Point clouds were
inspected for outliers. Using CloudCompare, we established optimized
parameters (points over one standard deviation from the average dis-
tance between the 30 nearest points) to identify and remove erroneous
points such as birds and vehicles without losing ground points. The sub-
sequent data processing was performed in ArcMap 10.5, ArcGIS Pro 2.4,
and MATLAB R2019a. We randomly subsampled 20% of the 2016 data
points to reduce processing time, and because the high point density
was not necessary considering the relatively low resolution of the
2009–2011 dataset. Subsampling did not generate scarce cliff face cov-
erage, because the cliff regions typically had the highest original point
density. Next, each section was converted to triangulated irregular net-
works (TINs) and TIN facets with edges longer than 5 mwere removed.
TINs were converted into 1m resolution DEMs using a natural neighbor
interpolation (Sibson, 1981). TheDEM resolutionwas selected based on
the lower resolution point density (1.5 pts. m−2; 2009–2011), as pixel
values should be interpolated from more than one point to minimize
error (Wheaton et al., 2010).

3.1.3. Cliff face identification
Complex and variable cliff topography in the study area limited di-

rect use of existing independent cliff base and top identification
methods (Liu et al., 2009; Richter et al., 2013; Palaseanu-Lovejoy et al.,
2016; Payo et al., 2018). Therefore, to delimit the cliff face, we devel-
oped a semi-automated method to extract both the cliff base and cliff
top from terrainmodels (Fig. 3) using combined elements from existing
studies (Liu et al., 2009; Richter et al., 2013; Swirad and Rees, 2015;
Palaseanu-Lovejoy et al., 2016; Swirad et al., 2016; Payo et al., 2018)
that search for characteristic inflection points on shore-normal profiles.

In ArcMap, we generated shore-normal transects at 5 m alongshore
intervals along a generalized shoreline GIS layer from the California
Department of Fish and Wildlife (purl.stanford.edu/hj484bt5758).
Using a generalized shoreline helps generate orderly, non-overlapping
transects. Transects extended 100 m seaward and 300 m landward
from the generalized shoreline, or to the first paved road (www.
openstreetmap.org; as of 28 Apr 2020), to ensure entire cliff faces
were within the buffer, and were sampled at 1 m cross-shore spacing.

Next, wemanually labelled cliff base and top locations on 5558 tran-
sects (~2.5% all transects) and extracted the associated attributes of the
1) distance to the seaward end of the transect (ArcMapNear tool), 2) el-
evation, 3) convolution Laplacian filter value (ArcMap Extract Values to
Points tool), 4) average slopes of 10 adjacent seaward and landward
points (optimized based on typical cross-shore cliff extent of >10 m),
and 5) vertical difference between the transect and a trendline, i.e. a
straight line connecting transect ends (calculated in MATLAB).
Thresholds for automated cliff base and top selection were set based
on the attribute ranges of the manually labelled points. Potential cliff

http://ndbc.noaa.gov
http://ndbc.noaa.gov
http://tidesandcurrents.noaa.gov
https://wrcc.dri.edu
https://coast.noaa.gov
http://purl.stanford.edu/hj484bt5758
http://www.openstreetmap.org
http://www.openstreetmap.org


Fig. 2.Workflow to create inventories of erosion and deposition objectswithin cliff faces fromLiDARpoint clouds between 2009–2011 and 2016 inCalifornia. Acronyms: TIN – triangulated
irregular network; DEM – digital elevation model; NDVI – normalized difference vegetation index.

Table 1
2009–2011 LiDAR survey extents, block identifiers, and dates (Fugro, 2011). The timespan
used for the erosion analyses was calculated between the latest 2009–2011 survey date
and April–May 2016. Alongshore extent was measured from the USA/Mexico border
(0 km) to the California/Oregon border (1646 km).

Alongshore extent
(km)

Survey date (block ID from Fugro, 2011) Analysis
timespan (yr)

0–49 Nov 2009 (V) 6.6
49–133 Oct 2009 (U) 6.6
133–184 Oct 2009 (T) 6.6
184–284 Oct 2009 (S) 6.6
284–379 Nov 2009 (R) 6.5
379–423 Nov 2009 (Q) 6.5
423–467 Nov 2009 (P) 6.5
467–555 Nov 2009 (O) 6.5
555–627 Nov 2009; May 2010 (N) 6.0
627–675 Nov 2009 (M) 6.5
675–768 Nov 2009; May 2010 (L) 6.0
768–848 May 2010; Jun 2010; Oct 2010 (K) 5.6
848–913 Jun 2010; Sep 2010; Oct 2010 (J) 5.6
913–984 Jun 2010; Sep 2010; Nov 2010 (I) 5.6
984–1015 Jun 2010; Oct 2010; Nov 2010 (H) 5.6
1015–1118 Sep 2010; Oct 2010; Nov 2010 (G) 5.6
1118–1202 Sep 2010; Nov 2010 (F) 5.6
1202–1297 Sep 2010; Oct 2010; May 2011 (E) 5.0
1297–1388 Oct 2010; May 2011; Jun 2011 (D) 5.0
1388–1458 Jun 2011; Jul 2011; Aug 2011 (C) 4.8
1458–1573 Sep 2010; May 2011; Jun 2011; Aug 2011 (B) 4.8
1573–1646 Sep 2010; Nov 2010; Dec 2010; Jun 2011; Jul 2011 (A) 4.9
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base points met the following criteria: 1) location 80–200 m from the
seaward transect end, 2) elevation 0–4 m NAVD88, 3) average slope of
the 10 adjacent seaward vertices <20°, 4) average slope of the 10 adja-
cent landward vertices >15°, and 5) elevation at least 8 m below
trendline 1 (blue line and h1 in Fig. 3b). If more than one point fulfilled
all criteria, the point with the lowest convolution Laplacian filter value
was selected (after Richter et al., 2013). If no points fulfilled the criteria,
the transectwas skipped. The cliff base linewas generated by connecting
available ordered cliff base points.

Potential cliff top pointsmet the following criteria: 1) location>100m
from the seaward transect end, 2) elevation 15–100 m NAVD88, 3) aver-
age slope of the 10 adjacent seaward vertices >10°, 4) average slope of
the 10 adjacent landward vertices <40°, and 5) elevation above trendline
2 (dashed line and h2 in Fig. 3b). If more than one point fulfilled all the
criteria, the point with the greatest h2was selected.

The automated mapping correctly identified the same manually la-
belled transect point location for 90% (5002) of cliff base and 71%
(3946) of cliff top points, andwas then applied over the entire coastline.
Cliff base and top positions were visually inspected and manually mod-
ified if necessary.

The cliff base and top points delimited the cliff face area.Merged cliff
face areas from the two surveys defined the area of interest for change
detection with the seaward extent usually representing the 2009–
2011 cliff base (except locations where deposition in 2016 was more
seaward) and the 2016 cliff top as the landward extent (Fig. 3c). Areas
with errors, insufficient data in either survey, or significant geodetic off-
set between the surveys (Martin, 2012) were masked out, which
accounted for 14% of the mapped cliff face area.

Image of Fig. 2


Fig. 3. Cliff face identification: a) example of cross-shore transects and automatically
identified (before manual editing) cliff base and cliff top points (background: 2016
LiDAR hillshade); b) characteristics of vertices along a transect (h1 and h2 indicate
differences in elevation used in automated detection of the cliff base and top,
respectively); c) example of the final mapped cliff face extent (background: 2016 LiDAR
hillshade).
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3.1.4. Change object inventories
Topographic change detection consisted of several steps (Fig. 4).

First, DEM rasters were differenced (ArcMapMinus tool) to show nega-
tive and positive elevation change. Changes included both real change
(i.e. topography and vegetation) and erroneous change from survey in-
accuracy, interpolation, and geodetic offset (Martin, 2012; Williams,
2013; Turowski and Cook, 2017).

Twenty control areas spread throughout the study areawere used to
establish a vertical level of detection delimiting lower-magnitude eleva-
tion changes indistinguishable from noise. Control areas consisted of in-
land slopes (average slope 14–36°; range 0–57°) representative of the
coastal cliff topography and vegetation conditions (using the Normal-
ized Difference Vegetation Index, NDVI; range 0.25–0.83) obtained
from 2009 optical imagery (National Agriculture Imagery Program,
NAIP imagery, gis.data.ca.gov), and were inspected to confirm no signif-
icant valid change occurred during the study period. The vertical root
mean square difference (RMSZ) between surveys for the control areas
ranged between 0.07 and 0.32 m (Table 2). We established a vertical
level of detection threshold of 0.62 m (1.96 × max control area RMSZ
at 95% confidence level) and grouped adjacent grid cells into positive
5

(change raster values ≥ 0.62 m) and negative (change raster values ≤
− 0.62 m) change objects.

Change objects were divided into smaller regions of similar vegeta-
tive surface conditions based on a 0.54 NDVI threshold (Fig. 4) deter-
mined using 100 non-vegetated and 100 vegetated manually classified
objects (Fig. 5) using the 2009 NAIP optical imagery (gis.data.ca.gov).
Lastly, we enforced a minimal change object footprint of 10 m2

based on analysis of the 20 control areas, limiting volume detection
to ≥6.2 m3. This produced an inventory of 52,862 positive and
94,130 negative change objects meeting vertical and areal thresh-
olds (Fig. 4).

3.2. Object classification

3.2.1. Selection of predictors and algorithms
Change objects were classified to separate cliff erosion and deposi-

tion from other changes within the cliff face such as vegetation loss
and growth, dune dynamics, and construction activities. We character-
ized each change object with multiple attributes (with ArcMap tools),
henceforth referred to as ‘predictors’ (Table 3). We selected 11 predic-
tors for erosion, and 13 for deposition related to location, topography,
optical signature, size, and shape, based on field observations and char-
acteristics that could help distinguish mass movements from other
change, mainly the vegetation loss and growth. Predictors of object dis-
tance from the cliff base and cliff top, and elevation were used because
vegetation is often located in higher landward sections close to the
cliff top while deposition objects are often located at or near the cliff
base at lower elevations. Footprint area and vertical change predictors
help identify large scale coastal change because vegetation change is
typically smaller scale. For example, erosion objects can include eleva-
tion change up the cliff height and can reach >200 m, while vegetation
change is limited to relatively low vegetation heights (though some
sections of northern California contain giant sequoias that can reach
>50 m). Slope and roughness predictors represent variability in object
‘topography’ and help separate complex tree crowns and bush top
surfaces from smoother erosion and deposition surfaces. Similarly, to-
pographic aspect predictors aremore consistent for erosion and deposi-
tion objects than vegetation. NDVI predictors provide a direct measure
of vegetation, however, they may not work well for identification of
sparse vegetation areas or massmovements that include vegetated sur-
faces. The width to length ratio shape predictor helps identify extended
alongshore sections where the entire cliff face receded (low ratio).
Deposition objects are often located close to and seaward of erosion ob-
jects. Therefore, two erosion-related predictors were used for deposi-
tion detection including distance and direction to nearby erosion
objects. Some predictors include multiple metrics (e.g. min, max,
range) to account for variability. For example, to distinguish a landslide
from a tree failure, range and standard deviation of elevation may be
more important than the absolute elevation.

Using MATLAB, we tested five machine learning classification algo-
rithms: k-nearest neighbors (number of neighbors, k programmatically
picked from k = 1:50 based on the test loss; Euclidean distance),
decision trees, naïve Bayes (normal kernel density distribution), dis-
criminant analysis, and support vector machines (polynomial kernel
function; standardized predictors) (Alpaydin, 2014). We selected
these algorithms because they allow object classification from topo-
graphic and optical predictors, and have been used previously for classi-
fying landslides (Marjanović et al., 2011; Goetz et al., 2015; Dickson and
Perry, 2016). The algorithms vary in terms of sensitivity to known data,
assumptions about the character of input parameters and thresholds for
grouping. The k-nearest neighbors algorithm ascribes object class based
on the proximity to labelledmetrics. It is sensitive to knowndata includ-
ing outliers. The decision trees method makes a series of binary splits
with thresholds optimized to minimize variance. Excessively complex
treesmay over-fit data,while datasetswith unbalanced classesmay cre-
ate bias. The naïve Bayes algorithm applies the Bayes theorem that

http://gis.data.ca.gov
http://gis.data.ca.gov
Image of Fig. 3


Fig. 4. Topographic change detectionworkflow. The vertical level of detection for differences inDEMswas set to 0.62m. TheNormalizedDifference Vegetation Index (NDVI) thresholdwas
set to 0.54.
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describes probability of event from the prior knowledge of conditions,
and assumes predictor independence. Discriminant analysis assumes
that the observations in each class can be modelled with a multi-
dimensional normal probability. The boundary between classes is
based on the statistical distribution, which makes the method less
dependent on the training data noise compared to other algorithms.
Table 2
Control areas used to estimate vertical errors (RMSZ – root mean square difference).

UTM zone N Centroid X (m) Centroid Y (m) Area (

11 477,257 3,614,730 496
11 475,604 3,644,384 114
11 459,375 3,680,254 10,74
11 424,061 3,713,249 285
11 352,788 3,767,942 381
11 311,924 3,773,632 616
11 244,808 3,811,839 598
10 732,358 3,814,883 429
10 716,241 3,885,242 51
10 666,889 3,944,425 463
10 599,461 4,020,353 296
10 575,261 4,093,193 227
10 552,936 4,129,960 12,70
10 544,695 4,169,815 12,51
10 500,044 4,238,538 26,24
10 439,248 4,306,235 20,07
10 429,468 4,397,206 404
10 406,775 4,438,242 69
10 384,567 4,469,860 873
10 411,008 4,592,439 295

6

Limitations of discriminant analysis include assumptions of multi-
variate normality, equality of covariance matrices, and linearity.
The support vector machines algorithm attempts to maximally sepa-
rate classes by finding a vector with the lowest error or maximum
separation. That method may not be suitable if the margin of separa-
tion is narrow (Alpaydin, 2014).
m2) Change raster value (mean ± std dev) (m) RMSZ (m)

4 −0.22 ± 0.09 0.24
7 −0.03 ± 0.17 0.18
5 −0.14 ± 0.05 0.15
3 −0.03 ± 0.13 0.14
6 −0.21 ± 0.07 0.22
6 −0.18 ± 0.13 0.22
1 −0.15 ± 0.04 0.16
0 −0.12 ± 0.14 0.19
4 −0.11 ± 0.06 0.12
2 −0.07 ± 0.05 0.09
4 −0.01 ± 0.12 0.12
2 0.02 ± 0.07 0.07
5 0.06 ± 0.09 0.11
0 0.03 ± 0.15 0.15
8 −0.19 ± 0.10 0.21
4 −0.13 ± 0.07 0.15
2 −0.26 ± 0.07 0.27
5 −0.31 ± 0.04 0.32
6 −0.05 ± 0.05 0.07
5 0.10 ± 0.21 0.23

Image of Fig. 4


Fig. 5. The NDVI (Normalized Difference Vegetation Index) threshold of 0.54 was selected,
which generally separated 100 vegetated and 100 non-vegetated classified areas.

Table 4
Performance of the machine learning algorithms in classifying negative and positive
change objects.

Algorithm Negative change test loss Positive change test loss

k-nearest neighbors 0.10 (k = 3) 0.24 (k = 11)
decision trees 0.08 0.20
naïve Bayes 0.09 0.19
discriminant analysis 0.06 0.17
support vector machines 0.09 0.21
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3.2.2. Cliff erosion
To classify negative changes, we used 1000 randomly selected

objects, manually classified as ‘erosion’ or ‘vegetation’. Of the 1000
manually classified negative-change objects (‘known-class’), 13 were
excluded from modelling because they contained erroneous survey
artifacts or exceeded 1500 m3 (objects >1500 m3 were assumed to
exclusively represent cliff erosion). We randomly split the manually
classified inventory into training (70%) and test (30%) sets and ex-
amined the five machine learning algorithms using 11 predictors
(Table 3). Based on the proportion of misclassified objects in the
test set (henceforth referred to as ‘test loss’; Table 4), the discrimi-
nant analysis model performed best (test loss = 0.06) and correctly
classified 97% of the erosion objects (200 of 207; equivalent to 94% of
the erosion volume) and 88% of the vegetation objects (78 of 89). The
most important predictors (determined with automated feature se-
lection in MATLAB) were NDVI, aspect, elevation change, and eleva-
tion in 2009–2011.
Table 3
Predictors used to classify change objects within coastal cliff faces. Asterisks (*) indicate predic
the 2016 topography for the positive change. Predictors #12–13 are only used for the positive

# Predictor Unit Metrics (if > 1) Meaning/comments

1 Distance from the cliff base m Shortest planar dista
2 Distance from the cliff top m Shortest planar dista

line
3 Area m2 Planar area of object
4 Elevation 2009–2011 m NAVD88 Min, max, range,

mean, std. dev
5 Elevation 2016 m NAVD88 Min, max, range,

mean, std. dev
6 Elevation change m Min, max, range,

mean, std. dev, sum
Change raster values
Sum × 1 m2 equals to

7 Slope* degrees Min, max, range,
mean, std. dev

Maximum rate of cha

8 Roughness* degrees Min, max, range,
mean, std. dev

Standard deviation o

9 Aspect* degrees Range, std. dev Downslope direction
neighborhood

10 NDVI* n/a Min, max, mean
11 Width to length ratio m m−1 Minimum bounding
12 Distance to erosion m Positive change only

the nearest erosion o
13 Direction of erosion degrees Positive change only

the nearest point alo
the nearest erosion o
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3.2.3. Deposition
Positive change classification into ‘deposition’, ‘vegetation’, and

‘other objects’ for changes related to construction, etc. used a similar
procedure to negative change classification with two additional predic-
tors (Table 3). The test loss varied between 0.17 and 0.24 for the five
testedmachine learning algorithms (Table 4). Aswith negative changes,
discriminant analysis performed best (test loss= 0.17), correctly classi-
fying 91% of vegetation objects (161 of 177), 77% of other objects (83 of
108), and 60% of deposition objects (9 of 15; equivalent to 95% deposi-
tion volume). The most important predictors (determined with auto-
mated feature selection in MATLAB) were NDVI, aspect, elevation
change, and slope.

3.2.4. Model application on full inventories
We ran the discriminant analysis models on the full object invento-

ries using all predictors because using only the most important predic-
tor subset increased test loss to 0.08 (erosion) and 0.19 (deposition).
Results were checked visually and edited manually if needed. Lastly,
adjacent erosion and deposition objects that were previously treated
separately because of the NDVI thresholding (Fig. 5) were re-merged,
resulting in a final inventory of cliff change objects.

3.3. Erosion metrics and characteristics

The change object inventory was used to assess erosion object
characteristics and distributions, and to quantify regional changes. The
relationship between erosion object area, A, and volume, V, was repre-
sented as:
tors that are calculated from the 2009–2011 topography for the negative change and from
change.

ArcMap tool

nce between object edge and the cliff base line Near
nce between object edge and the 2009–2011 cliff top Near

Calculate Geometry Attributes
Zonal Statistics as Table

Zonal Statistics as Table

tal object volume
Minus; Zonal Statistics as Table

nge in DEM value in 3 × 3 cell neighborhood Slope; Zonal Statistics as Table

f slope in 5 × 5 cell neighborhood Focal Statistics; Zonal Statistics
as Table

of the maximum rate of DEM change in 3 × 3 cell Aspect; Zonal Statistics as Table

Zonal Statistics as Table
rectangle width divided by length Minimum Bounding Geometry
; shortest planar distance between object edge and
bject

Near

; difference in the angle between positive object to
ng the cliff top 2009–2011, and the positive object to
bject (range 0–180°)

Near

Image of Fig. 5


Table 6
Summary of the erosion and deposition within California coastal cliffs between 2009
−2011 and 2016.
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V ¼ a Ab ð1Þ

where a is a constant and b is the power-law exponent, whose value
may be indicative of underlying mechanisms. Higher b values (>1.3)
are typical for inventories with relatively deep landslides, while lower
values are more typical for inventories of near-surface detachments
(Larsen et al., 2010). Assessing the degree of fit to the power-law
(Eq. (1)) allows the identification of scale-invariant behavior (close
fit), or alternatively, a change in mechanism as a function of volume
(Guzzetti et al., 2009; Swirad et al., 2019). The relationship between
erosion object volume, V, and the non-cumulative frequency of occur-
rence, f(V), was represented as:

f Vð Þ ¼ α V–β ð2Þ

whereα is a constant and β is the power-law exponent, with higher
values indicating a larger proportion of smaller objects in the inventory
(Malamud et al., 2004) and potentially discontinuous rock faces, as op-
posed to more homogeneous rock (Hungr et al., 1999).

Regional change metrics were calculated at the state and county
levels. They include: total eroded and deposited volumes, net erosion
(eroded volume – deposited volume), net erosion rate per meter of
coastline (net erosion/coastline length/timespan), and net cliff retreat
rate (net erosion/coastline length/average cliff height/timespan).
Additionally, we explored cliff face erosion rates in 10 km alongshore
blocks. The timespan was calculated using the last survey of the 2009–
2011 LiDAR dataset for each of the 22 alongshore survey blocks
(Table 1) and April–May 2016, and was averaged over the coastal
reach investigated.

4. Results

4.1. Cliff mapping and object detection

Cliffs were automatically mapped along 1011 km of the
California coastline. Removal of areas with insufficient topographic
data quality resulted in 866 km of coastline (~52% of the California
coastline and ~ 86% of mapped California cliffs) and 4.96 × 107 m2 of
cliff face surfaces for analysis. The alongshore-averaged cliff base and
top elevations were 2.4 m and 44.5 m NAVD88, respectively, resulting
in an average cliff height of ~42 m. The mean cliff slope was 40° (max
82°).

Themodelling alone (before visual inspection) suggested that 1.51×
107 m3 material was eroded and 1.22 × 106 m3 deposited (Table 5).
Manual editing decreased automatically classified erosion and deposi-
tion volumes by 11% and 20%, respectively. After re-merging adjacent
objects (previously split by vegetation surface conditions, Fig. 5) the
final inventory consisted of 45,699 erosion objects with a total volume
Table 5
Summary of results using machine learning and manual editing to classify coastal cliff
change into objects.

Change type Number of
objects

Total change
volume (m3)

a) Negative change
Change objects detected using thresholds 94,130 1.79 × 107

Change objects classified as ‘erosion’ by machine learning 65,521 1.51 × 107

Erosion objects after manual editing 51,438 1.34 × 107

Erosion objects after re-merging adjacent objects 45,699 1.34 × 107

b) Positive change
Change objects detected using thresholds 52,862 6.57 × 106

Change objects classified as ‘deposition’ by machine
learning

2266 1.22 × 106

Deposition objects after manual editing 4017 9.72 × 105

Deposition objects after re-merging adjacent objects 1728 9.72 × 105

8

of 1.34 × 107 m3, and 1728 deposition objects with a total volume of
9.72 × 105 m3 (Table 5).

4.2. Coastal cliff erosion and deposition characteristics

The number of erosion objects was 26 times larger than deposition
objects, indicating deposit residence timewas<~7years formost failure
events. Erosion objects ranged in area from 10 m2 (imposed minimal
footprint) to 1.12 × 105 m2, and in volume from 6.43 m3 to 7.52 × 105

m3. Deposition objects ranged in area from 10 m2 to 1.45 × 104 m2,
and in volume from 6.89 m3 to 9.86 × 104 m3. About 10% of the cliff
face experienced erosion from 2009−2011 to 2016, and ~ 1% was cov-
ered in landslide deposits in 2016, considering the detection limits.
Net erosion was 1.24 × 107 m3, equivalent to cliff-averaged vertical
change of −0.25 m, and net cliff face retreat of 0.34 m (assuming a
mean cliff height of 42m along 866 kmof cliffs, Table 6). The net erosion
rate was 2.14 × 106 m3 yr−1 over the whole study area, equivalent to
2.47 m3 yr−1 per meter of coastline.

A strong correlation (r2= 0.92, p< 0.05) exists between the area and
volume of erosion objects with a b exponent of 1.13 (Eq. (1), Fig. 6a). The
non-cumulative volume-frequency distribution tightly fits to the power-
law (r2 = 0.99, p < 0.05) for objects between ~14 m3 and 1.45 × 105 m3

with the power-law exponent β of 0.80 (Eq. (2)). We observe a rollover
(a relatively lower number of objects) for small (<~14 m3) and large
(>1.45 × 105 m3) volume objects (Fig. 6b). Erosion objects smaller
than 14, 25, and 60 m3 comprise 25%, 50%, and 75% of the erosion ob-
ject inventory, respectively. Erosion objects larger than 3243 m3

constitute 1% of the inventory and 67% of the total eroded volume
(Fig. 6c).

The number and sizes of erosion objects varied between regions
and counties, with generally higher erosion rates and larger erosion
objects in northern California compared to southern California. The
highest number of erosion objects normalized by the coastline
length occurred in Sonoma County (Table 7). Humboldt County ex-
perienced the most erosion, the largest mean erosion object volume,
and the inventory with highest proportion of large objects
(described by the lowest β). Average cliff retreat rates ranged from
0.003 m yr−1 in Orange County to 0.18 m yr−1 in Humboldt County
(Table 7).

Retreat rates for the 10 km alongshore blocks (n = 137) averaged
0.07 ± 0.12 m yr−1 (std dev) and ranged from 0 to 1.16 m yr−1. The
highest retreat rates (>0.2 m yr−1; 6% blocks) were observed in San
Mateo (0.3 m yr−1), Marin (0.3 m yr−1), and Humboldt (1.16 m yr−1)
Counties. 58% of blocks were characterized by relatively low retreat
rates <0.05 m yr−1 (Fig. 7b).
Cliff change metric Erosion Deposition

Number of objects 45,699 1728
Total area (m2) 4.84 × 106 3.97 × 105

Proportion of cliff face (%) 9.8 0.8
Mean object area (m2) 106 230
Standard deviation of area (m2) 1084 680
Largest object area (m2) 1.12 × 105 1.45 × 104

Smallest object area (m2) 10 10
Mean object volume (m3) 293 562
Standard deviation of volume (m3) 5324 3172
Largest object volume (m3) 7.52 × 105 9.86 × 104

Smallest object volume (m3) 6.43 6.89
Total volume (m3) 1.34 × 107 9.72 × 105

Average elevation change (m) −2.76 2.45
Net erosion (m3) 1.24 × 107

Net cliff-averaged elevation change (m) −0.25
Net erosion rate (m3 yr−1) 2.14 × 106

Net erosion rate per meter of coastline (m3 yr−1) 2.47
Net cliff retreat rate (m yr−1) 0.06



Fig. 6. Size distribution of erosion objects identified for California coastal cliffs
between 2009−2011 and 2016: a) the relationship between erosion area and
volume and fitted power-law trendline (black line); b) non-cumulative volume-
frequency distribution of erosion objects and the power-law trendline (red line)
fitted for volumes between ~14 m3 and 1.45 × 105 m3 marked by the vertical
dashed lines; c) cumulative distribution (0.01 log10 bin width) of number of
erosion objects (black line) and total eroded volume (red line); horizontal dashed
lines represent 25th, 50th, 75th, 90th, 95th and 99th percentile; vertical dashed
lines represent the smallest and the largest object.
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5. Discussion

This study builds upon previouswork to quantify California cliff ero-
sion over large spatial scales at high resolution (Hapke et al., 2009;
Young, 2018) by including automated procedures to delineate the cliff
face and applying machine learningmethods to classify change objects.
The improved automated workflow reduces manual digitizing, editing,
9
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Fig. 7. Coastal cliff face retreat rates in California between 2009−2011 and 2016: a) rates averaged over 10 km alongshore blocks where 0 km represents the USA/Mexico border
and 1646 km represents the California/Oregon border; dashed lines delimit counties; b) relative occurrence of retreat rates (for all 10 km blocks from [a]) in 0.01 m yr−1 bins;
c) relationship between county-averaged changes between 2009−2011 to 2016 and 1998 to 2009–2011 (Young, 2018) cliff face retreat rates; red line represents the best-fit
linear regression and dashed line is the 1:1 relationship.
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classification, and processing time, allowing efficient quantification of
coastal cliff erosion.

5.1. Data quality and limitations

The 2.5D change detection methods presented here provide consis-
tency by eliminating resolution differences in point cloud density be-
tween the surveys. Limitations of the 2.5D method, when used from a
top view, include the inability to model and measure erosion of over-
vertical (or over-hanging) surfaces such as sea caves and notches
(Young et al., 2010a; Cook, 2017). While these features are locally im-
portant for cliff stability analysis, they are relatively limited along the
California coast, and unlikely to significantly impact the overall ero-
sion volume results. Change detection performed directly on point
clouds explored elsewhere (e.g. Benjamin et al., 2016; Cook, 2017)
could be considered for future surveys with consistent quality and
point density.

Datum differences between the two surveys used here were rela-
tively small (~2 cm; Martin, 2012) compared to survey accuracy, and
were implicitly addressed by using detection thresholds and masking
out cliffs that contained erroneous change data. Future studies could
10
be improved by including methods to decrease potential spatial offset,
such as tight point cloud co-registration before converting into DEMs
(Abellán et al., 2010), iterative shifting of DEMs over n pixel window
(Nuth and Kääb, 2011) or, in cases of tectonically active areas, removal
of the geoid correction from a pre-event DEM and elevation subtraction
from a smoothed post-event DEM (Oskin et al., 2012).

Statistically derived levels of detection such as used here (1.96 ×
RMSZ at 95% confidence level) are preferred for reliable change detec-
tion and suppressing noise (Höhle and Höhle, 2009). An alternative
approximation could be the 99.9% quantile of noise distribution
(Dewez et al., 2013).Weapplied a uniformvertical level of detection be-
cause of differences in survey quality and high topographic complexity.
However, where a range of cliff forms are present, using a non-uniform
threshold could help detection in areas such as low magnitude change
on flatter surfaces (Wheaton et al., 2010). If subsequent LiDAR surveys
maintain the quality of the 2016 dataset, RMSZ is likely to decrease
allowing a smaller vertical level of detection.

The minimal surface footprint of ten connected cells was optimized
based on analysis of unchanging control areas, as a threshold above
which no erroneous change was detected. While change detection
with smaller thresholds is possible, we opted for larger threshold levels

Image of Fig. 7


Z.M. Swirad and A.P. Young Geomorphology 389 (2021) 107799
in return for less error. In result, the overall methods produced conser-
vative erosion estimates because small volume objects were neglected.

Masking out cliff faces with insufficient data, survey errors, and
geodetic offset between the two surveys limited analysis to <80% of
mapped cliff faces in San Francisco, Marin, Sonoma, Humboldt, and
Del Norte Counties (Table 7). As a result, identified characteristics of
erosion may not fully represent changes occurring on coastal cliffs in
these entire counties. Future survey efforts could target areas in north-
ern California that still lack high-quality repetitive LiDAR surveys.

5.2. Cliff base and top detection

Parameter values used to identify cliff base and top positions reflect
local conditions. For instance, typical cliff base elevations in California
are between 0 and 4 m NAVD88, while cliff top elevations are usually
in the range of 15–100mNAVD88. The seaward and landward slope an-
gles for 10 consecutive points at 1 m intervals were optimum here,
because most California cliffs extend >10 m cross-shore. Optimal pa-
rameters may vary for other study locations and should be tested.
Future efforts for cliff base and top detection could use alternative
methods, such asmachine learning, potentially further reducingmanual
editing. Other possible improvements could include a region-growing
approach for cliff zone identification.
Fig. 8. Examples of detected change: a-b) smaller-scale rockfalls on the near-vertical cliff face (r
(yellow), Torrey Pines, San Diego; c-d) deep-seated landslide, Portuguese Bend, Palos Verdes; e-
−2 and 2 m vertical change (left panels).

11
Cliff base detection was less successful where meter-scale steps or
low slope landslide deposits were present at the cliff base. Generally,
the cliff top was correctly identified for cliffs cut into uplifted marine
terraces, where the cliff top slope break is often distinct. However, com-
plex lithology and structure of the California coast results in a range of
cliff face cross-sections (Griggs et al., 2005), and cliff top detection
was less successful for areas where within-cliff flattening exists and
for cliff sections with high alongshore variability. Building edges some-
timesmapped as cliff tops (Fig. 3a) could be eliminated in future studies
by masking infrastructure. Overall, using numerical thresholds im-
proved objectivity, consistency, and efficiency and only 10% of cliff
base and 29% of cliff top locations required manual editing.

Some sections of the coast (e.g. Big Sur, Point Sal, King Range)
contain mountain slopes, and separating cliff faces from hinterland
is challenging because of subtle slope changes. At these locations,
coastal and hillslope systems are likely connected, and landslides
such as Mud Creek (Warrick et al., 2019) can encompass both the
cliff face and the hillslope behind it. This study explicitly focused
on the coastal cliff, but the hillslope-level processes should be con-
sidered for decision making and land management, as hinterland
slopes may be unstable even if not directly influenced by wave ac-
tion. For example, we identified 131 landslides just outside the anal-
ysis zone used in this study (e.g. Fig. 8c).
ed), with deposition at the cliff base (blue) and vegetation change on the upper cliff section
f) erosion of the entire cliff face, Centerville Beach, Ferndale. Change rasters are saturated at

Image of Fig. 8
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5.3. Object classification

Discriminant analysis was the most successful classification algo-
rithm, potentially because it is less dependent on the training data
noise compared to other algorithms, and does not assume predictor
independence (Alpaydin, 2014). Therefore, discriminant analysis
likely outperformed other algorithms because of the heterogeneity
of California cliffs, including the range of mass movement types
and sizes, and vegetation surface conditions.

The most important predictors were NDVI, variability in aspect, ele-
vation and the magnitude of change. The NDVI optical signature cap-
tures differences in reflectance spectra signatures between bare and
vegetated surfaces, particularly in the near-infrared range (Bowker
et al., 1985). However, in this study, the NDVI value alone was not suf-
ficient to clearly separate mass movements from vegetation, possibly
because of: 1) distortions of the spectral imagery (Maxwell et al.,
2014; Ma et al., 2017); 2) cliff failures that include vegetated cliff
sections; and 3) temporal offsets between topographic (2009–2011
LiDAR) and optical (2009NAIP) surveys (if vegetation changes occurred
between these two surveys). Vegetation objects are characterized by
diverse aspects (orientation) resulting from their complex structures.
Conversely, the direction that cliffs face influences erosion object orien-
tation, resulting inmore consistent aspects of erosion objects compared
to vegetation. Dense vegetation is limitednear the shoreline and smaller
objects (<~20m3) located near the cliff base and at lower elevations are
usually mass movements (Fig. 8a-b). Predictors related to the magni-
tude of change also help separate erosion from vegetation change
(Fig. 8c-d). For example, large (≥1000m3) change objects mostly repre-
sent erosion, while vegetation change objects often have more variable
vertical change (high range and standard deviation of change raster
values) as compared to erosion objects.

Using a larger known-class inventory, particularly for deposition ob-
jects, could improve model performance, allowing the algorithm to
more accurately capture feature characteristics compared to other
changes. Automated deposition detection could also be improved by
using stratified sampling to balance classes in the training set, and by
developing location metrics that consider topographic influence on
massmovement direction rather than the planform proximity and rela-
tive angle to erosion objects.

5.4. Implications for rock coast studies

Data-driven analyses at large scale (>100 km) allow detection of re-
gional change patterns impossible to constrain when inspecting short
sections of a coastline. This study contributes to limited literature that
investigates large-area cliff face erosion.

5.4.1. Erosion rates
Converting Schmidt hammer rebound values (Young, 2018) to uni-

axial compressive strength using the Katz et al. (2000) model yields
an average of 23 ± 29 (std dev) MPa, typical for weak (0–25 MPa)
and medium hardness (25–50 MPa) rock classes (Prémaillon et al.,
2018). Retreat rates calculated here are generally consistentwith global
retreat rates for weak and medium hardness rocks (Prémaillon et al.,
2018) and Tertiary sedimentary rocks and shales (Woodroffe, 2002).

5.4.2. Spatial patterns
Alongshore variability in cliff face retreat rates at county and 10 km

scales could be related to several possible drivers. First, both annual
rainfall and erosion generally increase northwards, consistent with
rain induced landsliding mechanisms (e.g. Reichenbach et al., 2018).
However, Stanley et al. (2020) suggested using rainfall metrics that
are relative to the decadal-scale average. Second, offshore significant
wave height is larger in central and northern California compared to
southern California (Fig. 1), which may increase wave-driven erosion.
However, other factors such as beach sand levels, tides, wave runup,
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etc. also influence wave processes (Young et al., 2016, 2021). Third,
this study encompassed the 2015–2016 El Niño event, and in some
areas the 2009–2010 El Niño event (Table 1), which had variable im-
pacts along the California coast. For example, the 2015–2016 event is
one of the strongest El Niños on record, causing widespread beach ero-
sion (Barnard et al., 2017), yet Young et al. (2018) observed lower than
average cliff erosion rates in southern California which they ascribed to
low rainfall, a northerly swell approach, and asynchronous large swells
and high tides. Fourth, erosion resistance, controlled by lithology and
structure (Sunamura, 1992), varies alongshore (Hapke et al., 2014).
Lastly, cliff armoring, prevalent in southern California, locally limits ero-
sion (e.g. Young, 2018).

5.4.3. Temporal patterns
The state-averaged cliff face retreat rate of 0.06 m yr−1 is the same

order of magnitude measured between 1998 and 2009–2011 for south-
ern and central California (0.04 m yr−1, Young, 2018). The difference
between the two epochs is potentially from inclusion of faster eroding
cliffs of northern California in the present inventory, differences in de-
tection thresholds, the stochastic nature of cliff erosion, and/or time-
varying environmental conditions such as El Niño. At a county level,
cliff face retreat rates in the two epochs were correlated (r2 = 0.79,
p < 0.05) with slightly higher rates in the more recent period
(Fig. 7c). This differs from Young (2018) who observed that at
much finer resolution (5 m alongshore), historical (1920s–1930s
to 1998) and more recent (1998 to 2009–2011) cliff top retreat
rates were significantly inversely correlated for areas with large re-
treat rates in either epoch. Further analyses are needed to examine
the differences between retreat histories and cyclic erosion pat-
terns at local (m) and regional (km) scales over varying time
periods.

5.4.4. Detachment sizes
We found an area-volume exponent b of 1.13 (Eq. (1); Fig. 6a),

which is characteristic of relatively shallow landslide inventories
(Larsen et al., 2010). However, we observed many deep-seated land-
slides in the dataset, and the order of magnitude volume range char-
acterizing any given footprint size suggests a range of possible
erosion mechanisms (Swirad et al., 2019), consistent with the wide
range of geological and geomorphological settings in California
(Griggs et al., 2005; Hapke et al., 2014). The observed volume-
frequency exponent β of 0.80 (Eq. (2); Fig. 6b) is within the typical
range (0.4–1.1) for mass movements (Santana et al., 2012). The rel-
atively high β characterizing Orange County erosion features sug-
gests more smaller, shallower erosion events, while the low β
characterizing erosion in Humboldt and Del Norte Counties suggests
a higher relative proportion of larger, deeper landslides, or event su-
perposition (Table 7). The volume-frequency rollover observed for
the smallest (<~14 m3) objects could be caused by limited detection
of small objects (from georeferencing errors, vertical accuracy and
the detection thresholds used; Olsen et al., 2015), superposition of
smaller events, misclassification of smaller erosion objects, and/or
limits on the erosion size imposed by rock structure (Hungr et al.,
1999; Malamud et al., 2004). More research is needed to validate
the power-law relationship for smaller erosion features (<~14 m3)
and over shorter timescales (Williams et al., 2018, 2019; Young
et al., 2021). Objects larger than 1.45 × 105 m3 were less frequent
than predicted with the power-law relationship (Fig. 6b) and may
indicate a cliff height influence on the maximum landslide size
(Fig. 8e). Overall, the size and area-volume distributions suggest
that our erosion inventory generally includes small to medium-
scale cliff failures (Fig. 8a-b), catastrophic events (Fig. 8c-d), and sec-
tions where the entire cliff face retreated, shifting the coastline in-
land (Fig. 8e-f). Detailed geological and geomorphologic analysis
could reveal the mechanism of mass movement through sliding, col-
lapse, etc.
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5.4.5. Sediment budget
The key variables in estimating the coastal cliff beach-sediment con-

tribution include the rate of cliff erosion and the amount of coarse-
grained sediment within the cliffs that will potentially remain in the
nearshore littoral system. After a cliff failure, wave action disaggregates
the failed material andmobilizes the fine-grained sediments, which are
transported offshore. In contrast, coarse sediments are typically
retained in the littoral zone and supply new beach-building material.
The grain size threshold nominally separating these depositional envi-
ronments is known as the littoral cutoff diameter (Hicks and Inman,
1987; Best and Griggs, 1991; Limber et al., 2008). The relative impor-
tance of cliffs as natural sand sources varies widely across California
and depends on the spatial extent and time period being analyzed
(e.g. Flick, 1993; Patsch and Griggs, 2006, 2008; Young and Ashford,
2006; Young et al., 2010b). The average erosion rate measured from
2009–2011 to 2016was 2.47m3 yr−1 permeter of coastlinewith amax-
imumof>13m3 yr−1 in Humboldt County. These results provide an op-
portunity to refine statewide estimates of cliff sediment contributions to
the California coast, however more research is needed to determine the
percent of coarse grain cliff material in many areas.

6. Conclusions

This study quantified cliff erosion along 866 km of California coast-
line between 2009–2011 and 2016 using airborne LiDAR DEMs. The
workflow automates cliff face delineation and change object classifica-
tion, greatly reducing processing time and subjectivity. Change detec-
tion and object classification combined 2.5D DEM analysis, vertical
and areal detection thresholds, spectral surface signatures (NDVI), ma-
chine learning methods, and manual quality control. Machine learning
object classification methods separated erosion and deposition from
other changes within the cliff face, notably the loss and growth of vege-
tation. Five algorithms were trained and tested on two sets of 1000
manually labelled change objects. Discriminant analysis performed
best, with test losses of 0.06 and 0.17, for negative and positive change
object classification, respectively. Visual inspection and manual editing
of the automated object classification reduced the final calculated ero-
sion and deposition volumes by 11% and 20%, respectively.

Overall, 10% of California cliff faces studied experienced erosion
and 1% retained new deposits of eroded material. Net cliff erosion
was 1.24 × 107 m3, equal to the net erosion rate of 2.47 m3 yr−1

per meter of coastline, and average cliff retreat rate of 0.06 m yr−1.
Erosion objects varied in size from 6.43 m3 to 7.52 × 105 m3.
Erosion object area and volume were strongly correlated (r2 =
0.92). The volume-frequency relationship fit a power law for vol-
umes ranging from ~14 m3 to 1.45 × 105 m3 with an exponent of
β = 0.80, typical for terrestrial mass movements. The largest 1%
of erosion objects (>3243 m3) comprised 67% of the total eroded
volume. Humboldt County experienced the highest cliff retreat
rate (0.18 m yr−1), while cliff erosion in Orange County was rela-
tively limited (0.003 m yr−1). The analysis of large-scale LiDAR
datasets, facilitated by automated methods, can help inform regional
decision making and coastal change modelling. With calibration, the
methods are generally applicable to other cliffed coastlines.
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